
Hardware Prefetcher Aggressiveness Controllers: Do We
Need Them All the Time?

Anuj Mishra and Biswabandan Panda,
Department of Computer Science and Engineering, IIT Kanpur, India

1. ABSTRACT
Hardware prefetching is a well known latency hiding tech-

nique for improving performance. A hardware prefetcher
predicts future memory references and brings data to cache
before processor demands it. However, in case of many-core
systems, prefetchers can increase shared resource contention
such as DRAM bandwidth contention, degrading overall sys-
tem performance. Research on controlling aggressiveness
(that controls prefetch degree and distance) of prefetchers
has focused on heterogeneous workloads having a mix of
prefetch friendly (applications that get benefit with prefetch-
ing) and unfriendly (applications that do not get benefit with
prefetching). But a large number of server workloads are
multi-threaded and homogeneous in nature. We showcase,
prefetch aggressiveness controllers that perform well in case
of heterogeneous workloads by classifying and grouping ap-
plications, provide marginal utility in case of homogeneous
workloads. Our findings show that there is no need of group-
ing or clustering mechanisms for controlling aggressiveness.
Instead, we make a case for a simple online profiler that can
decide whether to keep prefetchers ON or OFF.

2. MOTIVATION
The number of cores in current generation servers have

increased substantially. However, the DRAM bandwidth has
not been able to keep up with this increase [1]. For exam-
ple, a recent Intel Xeon [1] of 28 cores (56 hyper-threading
threads) has support for only six DRAM channels, only one
DRAM channel per nine threads. This leads to an increase
in contention for DRAM bandwidth among the cores. State-
of-the-art prefetchers like IPCP[13], SPP[12] and Bingo [4]
show significant improvement in single core performance
but also increase the DRAM traffic because of additional
prefetch requests. The additional traffic because of prefetch-
ing, increases the contention at all shared resources (on-chip
network, last level cache (LLC), DRAM bandwidth). How-
ever, recent studies [5] show LLC contention is not a prob-
lem with large LLC. So, we focus primarily on the effect of
DRAM bandwidth on the effectiveness of hardware prefetch-
ing. Figure 1 shows the performance improvement provided
by different state-of-the-art prefetchers such as IPCP[13],
SPP[12], and Bingo[4] with high (4 channels, one channel
for four cores) and low(2 channels, one channel for eight
cores) DRAM bandwidths for a 16 core system. We use a
per channel bandwidth of DDR4-3200 (25.6 GB/s). As we
can see, for prefetch friendly applications, all the prefetchers
experience performance reduction in case of low bandwidth

Figure 1: Performance improvement with different state-of-
the-art prefetchers for a 16-core system having three-level
cache hierarchy with high (4 channels) and low(2 channels)
DRAM bandwidths. IPCP-L1: IPCP at the L1, SPP/Bingo-
L2: SPP/Bingo at the L2.

(2 DRAM channels) and in case of prefetch unfriendly ap-
plications, there is a performance degradation irrespective of
available DRAM bandwidth. Prefetch aggressiveness con-
trollers tackle this problem by controlling prefetch degree and
prefetch distance. However, prior works [7], [11], [14] [10]
[16] [8] [15] [9] on prefetch aggressiveness control focus pri-
marily on heterogeneous mixes (multicore system with each
core running a different application), propose changes in hard-
ware for classifying applications into clusters (groups) based
on prefetch behavior. Although the mechanisms proposed in
prior works improve performance for heterogeneous work-
loads, they have marginal utility for homogeneous workloads
(all cores running the same application) that are common
in server environments. Also, majority of the mechanisms
are proposed for simple stride and stream based prefetchers
but fails to deliver performance benefit over state-of-the-art
prefetchers as they have in-built mechanisms for aggressive-
ness control based on prefetch accuracy and coverage.

In the next section, we present detailed analysis of our idea
and conclude that all the prior aggressiveness controllers have
minor utilities in terms of performance improvement and we
can get similar or better performance from prefetching using
a naive performance based profiler.

3. DO WE NEED CLUSTERING?
Prior prefetch aggressiveness controllers use grouping

(clustering) of applications for controlling prefetch degree
and prefetch distance. We showcase that there is no need
of grouping (clustering) with homogeneous workloads. We
extend ChampSim[3] (a trace-based simulator used in Data

1



Cluster size Cluster size
(a) low bandwidth(2 channels) (b) High bandwidth(4 channels)

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 w
.r.

t n
o 

pr
ef

et
ch

in
g

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 w
.r.

t n
o 

pr
ef

et
ch

in
g

Figure 2: Performance improvement with hardware prefetching for different cluster sizes for a 16 core system. Higher the better.

Figure 3: Performance improvement with a naive profiler for
a 16 core system with low DRAM bandwidth.

Prefetching Championship[2]) for many-core system with
detailed DRAM bandwidth, on-chip-interconnect, and sliced
LLCs and compare the effectiveness of different clustering
mechanisms. With large LLCs, and scalable high-bandwidth
interconnect, off-chip shared DRAM bandwidth becomes the
bottleneck on many-core system. We show the results for a
16 core simulated system in SPEC[6] rate mode. We select
four SPEC 2017 benchmarks that are representative of differ-
ent performance trends that we observe across all memory
intensive SPEC 2017 benchmarks.

Size of the cluster (number of cores with hardware prefetch-
ing ON) is an important factor in prior prefetch aggressive-
ness controllers. Size of the cluster determines the (i) amount
of time for which a core (application) gets benefit from
prefetching as a small cluster size would mean more clusters
whereas a large cluster would mean few clusters), and (ii) the
DRAM bandwidth congestion caused by prefetch requests.

In Figure 2, we show the performance improvement on a
16-core system, with IPCP prefetcher [13] for all cluster sizes
with low and high DRAM bandwidths. Cluster size of 16
means that all the 16 applications running on 16 cores, have
their respective prefetchers ON whereas cluster size of zero
means, all the prefetchers are OFF. We mainly concentrate
on Figure 2 (a), where DRAM bandwidth is scarce and it
is a good indicator of recent Intel servers [1]. We observe
that on varying size of the cluster (number of applications
with prefetching ON), different applications show different
behaviors, for instance, prefetch friendly applications (such
as gcc) shows performance improvement with an increase in

cluster size across all bandwidths, while prefetch unfriendly
applications (mcf) perform better with lower cluster sizes.
We observe an interesting behavior for fotonik, unlike other
applications, we see a fluctuation in performance improve-
ment with higher cluster sizes, which is a result of an interplay
between the two attributes (i) and (ii) that we discussed above.

We observe from Figure 2 that we get the best performance
for prefetch friendly benchmarks when cluster size is equal
to number of cores (16 in our case) (except for fotonik that
performs slightly better with cluster size three in case of low
bandwidth), which is equivalent to having all prefetchers on.
While for prefetch unfriendly benchmarks, the performance
peaks are are always at cluster size zero, which suggests
having prefetcher OFF for all the cores provide best system
performance.

This binary decision of having all prefetchers ON or OFF
based on prefetch behavior can be done by using either of-
fline or online profiling. We showcase that a naive profiler
that is light-weight and online in nature is highly effective
in improving system performance. Our profiler has a small
training phase followed by an execution phase, where in the
training phase, the profiler learns whether it is beneficial to
turn the prefetcher ON or OFF. Figure 3 shows the perfor-
mance improvement by prefetching with our naive profiler
compared to baseline (having all prefetchers on) for a 16-core
simulated system with low bandwidth(2 channels). We get
the primary benefit for prefetch unfriendly applications. On
average, we observe 10 and 15 % improvement for IPCP and
SPP, while Bingo does not show any improvement because of
its conservative in-built prefetch throttling mechanisms. For
prefetch friendly benchmarks, we get performance similar to
baseline.

4. CONCLUSION
We highlight the problem of existing prefetch aggressive-

ness controllers on many-core systems. Through experiments
on a 16-core simulated system with different DRAM band-
widths across different cluster sizes, we conclude that there
is no utility of clustering used in prefetch aggressiveness
controllers for homogeneous workloads and we could get
maximum benefit by using a naive performance based pro-
filer that can either keep all the prefetchers ON or OFF.

2



5. ACKNOWLEDGEMENTS
This work is supported by the SRC grant SRC-2922.001

6. REFERENCES
[1] https://ark.intel.com/content/www/us/en/ark/

products/205684/intel-xeon-platinum-8380hl-
processor-38-5m-cache-2-90-ghz.html.

[2] https://dpc3.compas.cs.stonybrook.edu/.

[3] https://github.com/ChampSim/ChampSim.

[4] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and
H. Sarbazi-Azad. Bingo spatial data prefetcher. In 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 399–411, 2019.

[5] Rahul Bera, Anant V. Nori, Onur Mutlu, and Sreenivas Subramoney.
Dspatch: Dual spatial pattern prefetcher. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO ’52, page 531–544, New York, NY, USA, 2019. Association
for Computing Machinery.

[6] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. Spec
cpu2017: Next-generation compute benchmark. In Companion of the
2018 ACM/SPEC International Conference on Performance
Engineering, ICPE ’18, page 41–42, New York, NY, USA, 2018.
Association for Computing Machinery.

[7] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt.
Prefetch-aware shared resource management for multi-core systems.
In Proceedings of the 38th Annual International Symposium on
Computer Architecture, ISCA ’11, page 141–152, New York, NY,
USA, 2011. Association for Computing Machinery.

[8] Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt.
Coordinated control of multiple prefetchers in multi-core systems. In
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 42, page 316–326, New York, NY,
USA, 2009. Association for Computing Machinery.

[9] Wim Heirman, Kristof Du Bois, Yves Vandriessche, Stijn Eyerman,
and Ibrahim Hur. Near-side prefetch throttling: Adaptive prefetching
for high-performance many-core processors. In Proceedings of the
27th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’18, New York, NY, USA, 2018.
Association for Computing Machinery.

[10] V. Jimenez, A. Buyuktosunoglu, P. Bose, F. P. O’Connell, F. Cazorla,
and M. Valero. Increasing multicore system efficiency through
intelligent bandwidth shifting. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA),
pages 39–50, 2015.

[11] Victor Jiménez, Roberto Gioiosa, Francisco J. Cazorla, Alper
Buyuktosunoglu, Pradip Bose, and Francis P. O’Connell. Making data
prefetch smarter: Adaptive prefetching on power7. In Proceedings of
the 21st International Conference on Parallel Architectures and
Compilation Techniques, PACT ’12, page 137–146, New York, NY,
USA, 2012. Association for Computing Machinery.

[12] Jinchun Kim, Seth H. Pugsley, Paul V. Gratz, A. L. Narasimha Reddy,
Chris Wilkerson, and Zeshan Chishti. Path confidence based
lookahead prefetching. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-49. IEEE Press, 2016.

[13] Samuel Pakalapati and Biswabandan Panda. Bouquet of instruction
pointers: Instruction pointer classifier-based spatial hardware
prefetching. In Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture, ISCA ’20, page
118–131. IEEE Press, 2020.

[14] B. Panda. Spac: A synergistic prefetcher aggressiveness controller for
multi-core systems. IEEE Transactions on Computers,
65(12):3740–3753, 2016.

[15] Biswabandan Panda and Shankar Balachandran. Caffeine: A
utility-driven prefetcher aggressiveness engine for multicores. ACM
Trans. Archit. Code Optim., 12(3), August 2015.

[16] Aswinkumar Sridharan, Biswabandan Panda, and Andre Seznec.
Band-pass prefetching: An effective prefetch management mechanism
using prefetch-fraction metric in multi-core systems. ACM Trans.
Archit. Code Optim., 14(2), June 2017.

3

https://ark.intel.com/content/www/us/en/ark/products/205684/intel-xeon-platinum-8380hl-processor-38-5m-cache-2-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/205684/intel-xeon-platinum-8380hl-processor-38-5m-cache-2-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/205684/intel-xeon-platinum-8380hl-processor-38-5m-cache-2-90-ghz.html
https://dpc3.compas.cs.stonybrook.edu/
https://github.com/ChampSim/ChampSim

	Abstract
	Motivation
	
	Conclusion
	ACKNOWLEDGEMENTS
	References

